ON THE INTERLAMINAR STRESSES OF A COMPOSITE PLATE AROUND THE NEIGHBORHOOD OF A HOLE ## E. S. FOLIAS Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, U.S.A. (Received 16 July 1988; in revised form 22 November 1988) Abstract—The author in this paper investigates the 3-D stress field in the immediate vicinity of a bonded interface and the free edge of a hole in a laminated composite plate. The laminates are assumed to be of homogeneous and isotropic materials, but of different elastic properties. As to loading, a uniform tensile load is applied in the plane of the plate and at points far remote from the hole (shown in Fig. 1). In constructing the local asymptotic solution, the author assumes the 3-D field in a certain form which then permits a straightforward Williams approach for the determination of the stress singularities. The displacement and stress fields are recovered explicitly and a stress singularity is shown to exist for certain shear moduli ratios of G_2 , G_3 . In general, the stress singularity is shown to be a function of the respective ratios of the shear moduli and Poisson's ratio. Moreover, the presence of a second singularity is observed which has significant implications for the problem of adhesion. An extension of the results to anisotropic layers is also discussed. #### INTRODUCTION Composite laminates are being used extensively in aerospace structures. Many of these laminates, however, develop high interlaminar stresses near holes that ultimately cause delaminations. Knowledge of the stress field in such areas is of great importance to the designer. Unfortunately, the problem is 3-D in nature and as a result it is very difficult to solve. Moreover, the presence of two different material interfaces makes the problem even more complex. Problems of this type have been investigated from a 2-D point of view by many researchers and the results can be found in the literature. For example, Knein (1927) looked into the plane strain problem of an orthogonal elastic wedge bonded to a rigid base. Rongved (1955) investigated the problem of two bonded elastic half-spaces subjected to a concentrated force in the interior. Subsequently, Williams (1959) studied the stress field around a fault or a crack in dissimilar media. The work was then generalized by Rice and Sih (1965) also to include arbitrary angles. Bogy (1968) considered the general problem of two bonded quarter-planes of dissimilar isotropic, elastic materials subjected to arbitrary boundary tractions. The problem was solved by a straightforward application of the Mellin transform in conjunction with the Airy stress function. A few years later, Bogy (1971) extended his work to also include dissimilar wedges of arbitrary angles. A few months later, Hein and Erdogan (1971), using the same method of solution, independently reproduced the results by Bogy. Finally, Westmann (1975) studied the case of a wedge of an arbitrary angle which was bonded along a finite length to a half-space. His analysis showed the presence of two singularities close to each other. Thus, elimination of the first singular term does not lead to a bounded stress field since the second singularity is still present. Based on 3-D considerations,† Luk and Keer (1979) investigated the stress field in an elastic half space containing a partially embedded axially loaded, rigid cylindrical rod. The problem was formulated in terms of Hankel integral transforms and was finally cast into a system of coupled singular integral equations the solution of which was sought numerically. The authors were able, however, to extract in the limit from the integral equations the characteristic equation governing the singular behavior at the intersection of the free surface [†] Due to the symmetry of the applied load, the problem is 2-D. 1194 E. S. Folias Fig. 1. Laminated plate weakened by a cylindrical hole. and that of the rigid inclusion. Their result was in agreement with that obtained by Williams (1952) for a right-angle corner with fixed-free boundary conditions. Haritos and Keer (1980) investigated the stress field in a half-space containing an embedded rigid block under the conditions of plane strain. The problem was formulated by cleverly superimposing the solutions to the problems of horizontal and vertical line inclusions beneath an elastic half-space. By isolating the pertinent terms, the authors were able to extract directly from the integral equations the order of the stress singularity at both corners. Both results are in agreement with the Williams solution. Moreover, the authors point out the importance of the second singularity to the results of the load transfer problems. Delale (1984) extended the solution reported by Alblas (1957) for the equilibrium of one linear elastic layer with a hole to the case of two layers of different materials. He also looked into the stress singularity at the vicinity of the hole but the estimate of the singularity is based on 2-D considerations. Finally, Folias (1987), utilizing the form of a general 3-D solution for the equilibrium of linear elastic layers, which he previously developed was able to derive explicitly the 3-D displacement and stress fields at the intersection of a hole and a free surface. The analysis revealed that the stresses at the corner are proportional to ρ^{z-2} where ρ represents the local radius from the corner and $\alpha = 3.73959 \pm i1.11902$. It is interesting to note that the root is precisely the same as that obtained by Williams (1952) in his classic paper for a 90 material corner with free-free stress boundaries. The same general 3-D solution can now be used to solve the exact 3-D stress field in the vicinity of the intersection of an interface with the free surface of the hole in a laminated composite plate. Although our ultimate goal is the determination of the stress field in transversely isotropic laminae, in this paper we will investigate the simpler case where the laminae are made of homogeneous and isotropic materials. ## FORMULATION OF THE PROBLEM Consider the equilibrium of a laminated composite plate which occupies the space $|x| < \infty$, $|y| < \infty$ and $|z| \le h$ and contains a cylindrical hole of radius a whose generators are perpendicular to the bounding planes, namely $z = \pm h$. The plate is composed of laminae that are made of homogeneous and isotropic material but of different elastic properties. The laminates are assumed to be perfectly bonded at the interface. The plate is subjected to a uniform tensile stress field, applied far away from the hole (see Fig. 1). In the absence of body forces, the coupled differential equations governing the displacement functions $u_i^{(m)}$ are Fig. 2. Definition of local coordinates at the corner. $$\frac{1}{1 - 2v_m} \frac{\partial e^{(m)}}{\partial x_i} + \nabla^2 u_i^{(m)} = 0; \quad i = 1, 2, 3 \quad m = 1, 2$$ (1) where ∇^2 is the Laplacian operator, v_m is Poisson's ratio, $u_i^{(1)}$ and $u_i^{(2)}$ represent the displacement functions in media 1 and 2, respectively, and $$e^{(m)} \equiv \frac{\partial u_i^{(m)}}{\partial x_i}$$ $i = 1, 2, 3; m = 1, 2.$ (2) The stress-displacement relations are given by Hooke's law as $$\sigma_{ii}^{(m)} = \lambda_m e_{kk}^{(m)} \delta_{ii} + 2G_m e_{ii}^{(m)}$$ (3) where λ_m and G_m are material constants describing media 1 and 2. ### METHOD OF SOLUTION The main objective of this analysis is to derive an asymptotic solution that is valid in the immediate vicinity of the corner point, i.e. the point where the interface meets the free surface of the hole. Guided by a general solution to the equilibrium of linear elastic layers which the author constructed in a previous paper (Folias, 1975) we assume the complementary displacement field in the form $$u^{(m)} = \frac{1}{1 - 2v_m} \frac{\partial}{\partial x} \left\{ 2(1 - v_m) f_2^{(m)} + \frac{\partial f_1^{(m)}}{\partial z} + z \frac{\partial f_2^{(m)}}{\partial z} \right\} + \frac{\partial f_3^{(m)}}{\partial y}$$ (4) $$v^{(m)} = \frac{1}{1 - 2v_m} \frac{\partial}{\partial y} \left\{ 2(1 - v_m) f_2^{(m)} + \frac{\partial f_1^{(m)}}{\partial z} + z \frac{\partial f_2^{(m)}}{\partial z} \right\} - \frac{\partial f_3^{(m)}}{\partial x}$$ (5) $$w^{(m)} = \frac{1}{1 - 2v_m} \frac{\partial}{\partial z} \left\{ -2(1 - v_m) f_2^{(m)} + \frac{\partial f_1^{(m)}}{\partial z} + z \frac{\partial f_2^{(m)}}{\partial z} \right\}$$ (6) where the functions $f_j^{(m)}$, j = 1, 2, 3, are three-dimensional harmonic functions. If we furthermore assume that $$f_{i}^{(m)} = r^{-1/2} H_{i}^{(m)} (r - a, z) e^{i2\theta}; j = 1, 2, 3$$ (7) then the functions $H_I^{(m)}$ must satisfy the following equation: $$\frac{\partial^2 H_i^{(m)}}{\partial (r-a)^2} + \frac{\partial^2 H_i^{(m)}}{\partial z^2} - \frac{15}{4(a+r-a)^2} H_i^{(m)} = 0.$$ (8) It is found convenient at this stage to introduce the local coordinate system (see Fig. 2) 1196 E. S. FOLIAS $$r - a = \rho \cos \phi$$ $$z = \rho \sin \phi$$ in view of which, eqn (8) may now be written as $$\frac{\partial^2 H_j^{(m)}}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial^2 H_j^{(m)}}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 H_j^{(m)}}{\partial \phi^2} - \frac{15 H_j^{(m)}}{4a^2 [1 + (\rho/a)\cos\phi]^2} = 0.$$ (9) Under the assumption that the radius of the inclusion is sufficiently large, so that the condition $\rho \ll a$ be meaningful, we seek the solution to eq (9) in the form $$H_j^{(m)} = \sum_{n=0}^{\infty} \rho^{x+n} F_{jn}^{(m)}(\phi)$$ (10) where α stands for a constant. Without going into the mathematical details, we construct the following series representations in ascending powers of ρ . $$\frac{2}{1-2v_m} \left\{ \frac{\partial f_1^{(m)}}{\partial z} + z \frac{\partial f_2^{(m)}}{\partial z} \right\} = \rho^z \left\{ \left[A_1^{(m)} + A_2^{(m)} \right] \sin(\alpha \phi) + \left[B_1^{(m)} + B_2^{(m)} \right] \cos(\alpha \phi) + 2C^{(m)} \sin(\alpha - 2)\phi + 2D^{(m)} \cos(\alpha - 2)\phi \right\} \cos(2\theta) \quad (11)$$ $$\frac{4(1-v_m)}{1-2v_m}f_2^{(m)} = -\rho^*\{[A_1^{(m)}-A_2^{(m)}]\sin(\alpha\phi) + [B_1^{(m)}-B_2^{(m)}]\cos(\alpha\phi)\}\cos(2\theta)$$ (12) $$f_{\lambda}^{(m)} = \rho^{x} \{ A_{\lambda}^{(m)} \sin(\alpha \phi) + B_{\lambda}^{(m)} \cos(\alpha \phi) \} \sin(2\theta)$$ $$\tag{13}$$ where $$8(1 - v_m)C^{(m)} = \alpha [A_1^{(m)} - A_2^{(m)}]$$ (14) and $$8(1-v_m)D^{(m)} = \alpha[B_1^{(m)} - B_2^{(m)}] \tag{15}$$ and α , $A_i^{(m)}$, $B_i^{(m)}$ are constants to be determined from the boundary conditions. In particular, at $$\phi = 0$$: $\sigma_{xx}^{(1)} = \sigma_{xx}^{(2)}$ (16) $$\tau_{xz}^{(1)} = \tau_{xz}^{(2)} \tag{17}$$ $$\tau_{yz}^{(1)} = \tau_{yz}^{(2)} \tag{18}$$ $$u^{(1)} = u^{(2)} (19)$$ $$v^{(1)} = v^{(2)} \tag{20}$$ $$w^{(1)} = w^{(2)} \tag{21}$$ at $$\phi = \pi/2$$: $\tau_{ez}^{(1)} = 0$ (22) $$\tau_{cl}^{(1)} = 0 \tag{23}$$ $$\sigma_n^{(1)} = 0 \tag{24}$$ Interlaminar stresses around a hole 1197 at $$\phi = -\pi/2$$: $\tau_{cz}^{(2)} = 0$ (25) $$\tau_{r\theta}^{(2)} = 0 \tag{26}$$ $$\sigma_n^{(2)} = 0. \tag{27}$$ Substituting eqns (11)-(13) into eqns (16)-(27) one finds that all the boundary conditions are satisfied if one considers the following combinations to vanish: $$\alpha B_1^{(1)} + \alpha + 8v_1 \left(\frac{1 - v_1}{1 - 2v_2}\right) - 4\left(\frac{1 - v_1}{1 - 2v_1}\right) D^{(1)} - (G_2/G_1) \left\{ \alpha B_1^{(2)} + \left[\alpha + 8v_2 \left(\frac{1 - v_2}{1 - 2v_2}\right) - 4\left(\frac{1 - v_2}{1 - 2v_2}\right)\right] D^{(2)} \right\} = 0 \quad (28)$$ $$\alpha[A_1^{(1)} + A_2^{(1)}] + 2(\alpha - 2)C^{(1)} - \left(\frac{G_2}{G_1}\right) \{\alpha[A_1^{(2)} + A_2^{(2)}] + 2(\alpha - 2)C^{(2)}\} = 0$$ (29) $$A_3^{(1)} = A_3^{(2)} = 0 ag{30}$$ $$\{[A_1^{(1)} + A_2^{(1)}]\alpha + 2(\alpha - 2)C^{(1)}\} - \{[B_1^{(1)} + B_2^{(1)}]\alpha - 2(\alpha - 2)D^{(1)}\}\tan\left(\frac{\alpha\pi}{2}\right) = 0$$ (31) $$B_{3}^{(1)} = 0 (32)$$ $$\left\{ \alpha \left(\frac{1 - v_1}{1 - 2v_1} \right) [A_1^{(1)} - A_2^{(1)}] - A_1^{(1)} + \left[\alpha - 4 \frac{1 - v_1}{1 - 2v_1} \right] C^{(1)} \right\} \tan \left(\frac{\alpha \pi}{2} \right) + \left\{ \alpha \left(\frac{1 - v_1}{1 - 2v_1} \right) [B_1^{(1)} - B_2^{(1)}] - B_1^{(1)} + \left[\alpha - 4 \frac{1 - v_1}{1 - 2v_1} \right] D^{(1)} \right\} = 0 \quad (33)$$ $$[A_1^{(2)} + A_2^{(2)}]\alpha + [B_1^{(2)} + B_2^{(2)}]\alpha \tan\left(\frac{\alpha\pi}{2}\right) - 2C^{(2)}(\alpha - 2) - 2(\alpha - 2)D^{(2)}\tan\left(\frac{\alpha\pi}{2}\right) = 0 \quad (34)$$ $$B_3^{(2)} = 0 (35)$$ $$-\left\{\alpha\left(\frac{1-v_2}{1-2v_2}\right)\left[A_1^{(2)}-A_2^{(2)}\right]-A_1^{(2)}+\left[\alpha-4\left(\frac{1-v_2}{1-2v_2}\right)\right]C^{(2)}\right\}\tan\left(\frac{\alpha\pi}{2}\right) + \left\{\alpha\left(\frac{1-v_2}{1-2v_2}\right)\left[B_1^{(2)}-B_2^{(2)}\right]-B_1^{(2)}+\left[\alpha-4\frac{1-v_2}{1-2v_2}\right]D^{(2)}\right\} = 0. \quad (36)$$ The characteristic value α may now be determined by setting the determinant of the algebraic system (28)–(36) equal to zero. Once the roots have been determined, the complete displacement and stress fields can be constructed in ascending powers of ρ . Without going into the mathematical details, the characteristic values α are constant and can easily be determined with the aid of a computer. Although the equation has an infinite number of complex roots, only roots with a $1 < \min$ Re $\alpha < 2$ are of practical interest for they lead to singular stresses. In general, the characteristic values of α depend on the material properties of the laminae. Thus, the displacement field now reads: 1198 E. S. FOLIAS Fig. 3. Strength of the singularity vs G_2/G_1 for $v_1 = v_2 = 0.33$. the displacement field $$u^{(m)} = \alpha \rho^{x-1} \{ A_2^{(m)} \sin(\alpha - 1)\phi + B_2^{(m)} \cos(\alpha - 1)\phi + C^{(m)} \sin(\alpha - 3)\phi + D^{(m)} \cos(\alpha - 3)\phi \} \sin\theta \cos(2\theta)$$ $$+ 2\rho^{x-1} \{ C^{(m)} \cos(\alpha - 2)\phi - D^{(m)} \sin(\alpha - 2)\phi \} \sin\phi \sin\theta \cos(2\theta)$$ $$v^{(m)} = \alpha \rho^{x-1} \{ A_2^{(m)} \sin(\alpha - 1)\phi + B_2^{(m)} \cos(\alpha - 1)\phi + C^{(m)} \sin(\alpha - 3)\phi + D^{(m)} \cos(\alpha - 3)\phi \} \cos\theta \cos(2\theta)$$ $$+ 2\rho^{x-1} \{ C_2^{(m)} \cos(\alpha - 2)\phi - D_2^{(m)} \sin(\alpha - 2)\phi \} \sin\phi \cos\theta \cos(2\theta)$$ $$w^{(m)} = \alpha \rho^{x-1} \{ A_1^{(m)} \cos(\alpha - 1)\phi - B_1^{(m)} \sin(\alpha - 1)\phi + C^{(m)} \cos(\alpha - 3)\phi - D^{(m)} \sin(\alpha - 3)\phi \} \cos(2\theta)$$ $$(38)$$ The analysis clearly shows that, in the neighborhood of the interface and the free surface of the hole, the stress field is proportional to $\rho^{\alpha-2}$ and that for certain material properties it is singular. Moreover, the characteristic values α are independent of θ but they do depend on the material properties of the adjacent laminae. The first root α is found to be precisely the same as that of the corresponding 2-D case reported by Bogy (1971). Figures 3 and 4 depict typical results for various material properties. Finally, in the limit as $G_2 \to \infty$, i.e. for a perfectly rigid laminae, the characteristic value of $\alpha = 1.7112$ is obtained. Moreover, as $G_2 \to G_1$ and $v_2 \to v_1$, the solution of a continuous plate is recovered, a result which clearly meets our expectations. (39) $-2\rho^{x-1}\{C^{(m)}\cos(\alpha-2)\phi-D^{(m)}\sin(\alpha-2)\phi\}\cos\phi\cos(2\theta).$ An extension of this analysis to other angles of intersection with the free surface reveals the same results as those predicted by Bogy (1971) for the case of plane strain. It may also be noted that the analysis confirms the presence of another weaker singularity which was first pointed out by Westmann (1975). While it is true that the singular stress field is dominated by the largest singularity, the presence of a second singularity has important implications to the problem of adhesion. As a practical matter, the designer may now appropriately choose the material con- Fig. 4. Strength of the singularity vs G_2/G_1 for $v_1 = 0.33$, $v_2 = 0.25$. stants of the laminae so that the coefficients of the singular terms of the interfacial stresses vanish. There exists a sufficient number of constants that such an objective can indeed be accomplished. Focusing next on the interface plane z=0, we find the shear and normal stresses, to be $$\tau_m^{(m)} = 0 + \cdots \tag{40}$$ and $$\tau_{rz}^{(m)} = 2(\alpha - 1)G_m \rho^{\alpha - 2} \left\{ \alpha A_1^{(m)} + \left[(\alpha - 2) - 4(1 - v_m) \right] C^{(m)} \right\} \cos(2\theta) + \cdots$$ (41) $$\sigma_{zz}^{(m)} = \frac{2G_{m}v_{m}}{(1-2v_{m})}(\alpha-1)\rho^{\alpha-2} \left\{ \alpha \left[B_{2}^{(m)} - \left(\frac{1-v_{m}}{v_{m}} \right) B_{1}^{(m)} \right] + \left[\alpha - \left(\frac{1-v_{m}}{v_{m}} \right) (\alpha-4) \right] D^{(m)} \right\} \cos(2\theta) + \cdots$$ (42) Thus, only the shear stress $\tau_{rz}^{(m)}$ and the normal stress $\sigma_{zz}^{(m)}$ are of concern to the designer for they may very well contribute to possible debonding. Perhaps it is appropriate here to note that in the case of transversely isotropic† laminae, with a [0] and [90] stacking sequence, the exponent α is no longer independent of θ . In fact, it is a rather complicated function involving the material properties of the laminae as well as an angular distribution in θ . The analysis has recently been completed and the results will be reported in a follow-up paper. While it is well recognized that even these results may not represent the actual behavior of a real world of laminate structure, it will evince many of the stress field characteristics and provide us with a better understanding of the influence which the various material constants have on the exponent α . The author is well aware of this fact and is presently investigating the matter from a micromechanics point of view whereby he assumes a periodic extension of fibers embedded into a homogeneous and isotropic matrix with given orientations. He believes that such investigations from different angles may ultimately provide us with the proper understanding of the interlaminar stresses and the proper input to judge the adequacy of the models in predicting the actual behavior of the material. [†] An extension to orthotropic laminae is now also possible. 1200 E. S. FOLIAS Finally, it may be noted that we are also investigating the stress field away from the hole, for a [0] [90] stacking sequence of transversely isotropic laminae. This analysis will include, in the limit, the corresponding isotropic case. The results are expected to have the same characteristics as those obtained by Folias and Wang (1986) for a single isotropic layer. Acknowledgement—This work was supported in part by AFOSR Grant 87-0204 under the direction of Lt. Col. Haritos. The author is grateful for this support. #### REFERENCES Alblas, J. B. (1957). Theorie Van de Driedimensionale Spanningstoestand in een Doorboorde Plaat. Ph.D. thesis, H. J. Paris, Amsterdam. Bogy, D. B. (1968). Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 35, 460–466. Bogy, D. B. (1971). Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J. Appl. Mech. 377–386. Delale, F. (1984). Stress analysis of multilayered plates around circular holes. Int. J. Engng. Sci. 22, 57-75. Folias, E. S. (1975). On the three-dimensional theory of cracked plates. J. Appl. Mech. 42, 663-674. Folias, E. S. and Wang, J. J. (1986). On the three-dimensional stress field around a circular hole in a plate of arbitrary thickness. UTEC Report, University of Utah. Folias, E. S. (1987). The 3-D stress field at the intersection of a hole and a free surface. *Int. J. Fract.* 35, 187–194. Haritos, G. K. and Keer, L. M. (1980). Stress analysis for an elastic half space containing an embedded rigid block. *Int. J. Solids Structures* 16, 19–40. Hein, V. L. and Erdogan, F. (1971). Stress singularities in a two-material wedge, Int. J. Fract. 7, 317–330. Knein, M. (1927). Zur Theorie der Druckversuchs. Abhandlungen der Aerodynamische Inst. u.d. Technische Hochschule, Aachen, Germany, Vol. 7, pp. 43–62. Łuk, V. K. and Keer, L. M. (1979). Stress analysis for an elastic half space containing an axially-loaded rigid cylindrical rod. Int. J. Solid Structures 15, 805–827. Rice, J. R. and Sih, G. C. (1965). Plane problems of cracks in dissimilar media. J. Appl. Mech. 32, Trans. ASME Vol. 87, Ser. E 418–432. Rongved, L. (1955). Force interior to one of two joined semi-infinite solids. Second Midwestern Conference on Solid Mechanics, pp. 1–13. Westmann, R. A. (1975). Geometrical Effects in Adhesive joints. Int. J. Engng. Sci. 13, 369. Williams, M. L. (1952). Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19, Trans. ASME, 74, 526. Williams, M. L. (1959). The stresses around a fault or crack in dissimilar media. Bull. Scismol. Soc. Am. 49, 199.